Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 2(1): 52-63, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24511470

RESUMO

A large number of point mutations have been identified in induced pluripotent stem cell (iPSC) genomes to date. Whether these mutations are associated with iPSC generation is an important and controversial issue. In this study, we approached this critical issue in different ways, including an assessment of iPSCs versus embryonic stem cells (ESCs), and an investigation of variant allele frequencies and the heterogeneity of point mutations within a single iPSC clone. Through these analyses, we obtained strong evidence that iPSC-generation-associated point mutations occur frequently in a transversion-predominant manner just after the onset of cell lineage conversion. The heterogeneity of the point mutation profiles within an iPSC clone was also revealed and reflects the history of the emergence of each mutation. Further, our results suggest a possible approach for establishing iPSCs with fewer point mutations.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , Mapeamento Cromossômico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Frequência do Gene , Heterogeneidade Genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação Puntual , Análise de Sequência de DNA
2.
Nature ; 494(7435): 100-4, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23302801

RESUMO

The advantages of using induced pluripotent stem cells (iPSCs) instead of embryonic stem (ES) cells in regenerative medicine centre around circumventing concerns about the ethics of using ES cells and the likelihood of immune rejection of ES-cell-derived tissues. However, partial reprogramming and genetic instabilities in iPSCs could elicit immune responses in transplant recipients even when iPSC-derived differentiated cells are transplanted. iPSCs are first differentiated into specific types of cells in vitro for subsequent transplantation. Although model transplantation experiments have been conducted using various iPSC-derived differentiated tissues and immune rejections have not been observed, careful investigation of the immunogenicity of iPSC-derived tissue is becoming increasingly critical, especially as this has not been the focus of most studies done so far. A recent study reported immunogenicity of iPSC- but not ES-cell-derived teratomas and implicated several causative genes. Nevertheless, some controversy has arisen regarding these findings. Here we examine the immunogenicity of differentiated skin and bone marrow tissues derived from mouse iPSCs. To ensure optimal comparison of iPSCs and ES cells, we established ten integration-free iPSC and seven ES-cell lines using an inbred mouse strain, C57BL/6. We observed no differences in the rate of success of transplantation when skin and bone marrow cells derived from iPSCs were compared with ES-cell-derived tissues. Moreover, we observed limited or no immune responses, including T-cell infiltration, for tissues derived from either iPSCs or ES cells, and no increase in the expression of the immunogenicity-causing Zg16 and Hormad1 genes in regressing skin and teratoma tissues. Our findings suggest limited immunogenicity of transplanted cells differentiated from iPSCs and ES cells.


Assuntos
Transplante de Medula Óssea/imunologia , Diferenciação Celular/imunologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Pele/imunologia , Animais , Medula Óssea/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/imunologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/imunologia , Masculino , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/citologia , Pele/imunologia , Teratoma/imunologia , Teratoma/patologia
3.
Sci Technol Adv Mater ; 13(2): 025009, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877487

RESUMO

We report that hydrogen gas can be easily produced from water at room temperature using a Mg nanopowder (30-1000 nm particles, average diameter 265 nm). The Mg nanopowder was produced by dc arc melting of a Mg ingot in a chamber with mixed-gas atmosphere (20% N2-80% Ar) at 0.1 MPa using custom-built nanopowder production equipment. The Mg nanopowder was passivated with a gas mixture of 1% O2 in Ar for 12 h in the final step of the synthesis, after which the nanopowder could be safely handled in ambient air. The nanopowder vigorously reacted with water at room temperature, producing 110 ml of hydrogen gas per 1 g of powder in 600 s. This amount corresponds to 11% of the hydrogen that could be generated by the stoichiometric reaction between Mg and water. Mg(OH)2 flakes formed on the surface of the Mg particles as a result of this reaction. They easily peeled off, and the generation of hydrogen continued until all the Mg was consumed.

4.
Stem Cells ; 29(9): 1362-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21732496

RESUMO

c-Myc transduction has been considered previously to be nonessential for induced pluripotent stem cell (iPSC) generation. In this study, we investigated the effects of c-Myc transduction on the generation of iPSCs from an inbred mouse strain using a genome integration-free vector to exclude the effects of the genetic background and the genomic integration of exogenous genes. Our findings reveal a clear difference between iPSCs generated using the four defined factors including c-Myc (4F-iPSCs) and those produced without c-Myc (3F-iPSCs). Molecular and cellular analyses did not reveal any differences between 3F-iPSCs and 4F-iPSCs, as reported previously. However, a chimeric mice formation test indicated clear differences, whereby few highly chimeric mice and no germline transmission was observed using 3F-iPSCs. Similar differences were also observed in the mouse line that has been widely used in iPSC studies. Furthermore, the defect in 3F-iPSCs was considerably improved by trichostatin A, a histone deacetyl transferase inhibitor, indicating that c-Myc plays a crucial role in iPSC generation through the control of histone acetylation. Indeed, low levels of histone acetylation were observed in 3F-iPSCs. Our results shed new light on iPSC generation mechanisms and strongly recommend c-Myc transduction for preparing high-quality iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Blastômeros/fisiologia , Quimera , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Genes myc , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Proto-Oncogênicas c-myc/biossíntese , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...